

Gaia

A Stereoscopic Census of our Galaxy

http://www.rssd.esa.int/Gaia

March 2009

Timo Prusti

ESA

Gaia: Design Considerations

- Astrometry (V < 20):
 - − completeness to 20 mag (on-board detection) \Rightarrow 10⁹ stars
 - accuracy: 10–25 µarcsec at 15 mag (Hipparcos: 1 milliarcsec at 9 mag)
 - scanning satellite, two viewing directions
 - \Rightarrow global accuracy, with optimal use of observing time
 - principles: global astrometric reduction (as for Hipparcos)
- Photometry (V < 20):
 - − astrophysical diagnostics (low-dispersion photometry) + chromaticity \Rightarrow ΔT_{eff} ~ 200 K, log g, [Fe/H] to 0.2 dex, extinction
- Radial velocity (V < 16–17):
 - application:
 - third component of space motion, perspective acceleration
 - dynamics, population studies, binaries
 - spectra: chemistry, rotation
 - principles: slitless spectroscopy using Ca triplet (847–874 nm)

Gaia: Complete, Faint, Accurate

	Hipparcos	Gaia
Magnitude limit	12	20 mag
Completeness	7.3 – 9.0	20 mag
Bright limit	0	6 mag
Number of objects	120 000	26 million to $V = 15$
		250 million to $V = 18$
		1000 million to $V = 20$
Effective distance limit	1 kpc	1 Мрс
Quasars	None	5 x 10⁵
Galaxies	None	$10^{6} - 10^{7}$
Accuracy	1 milliarcsec	7 µarcsec at V = 10
		10-25 µarcsec at V = 15
		300 µarcsec at V = 20
Photometry	2-colour (B and V)	Low-res. spectra to $V = 20$
Radial velocity	None	15 km/s to V = 16-17
Observing programme	Pre-selected	Complete and unbiased

Stellar Astrophysics

- Comprehensive luminosity calibration, for example:
 - distances to 1% for ~10 million stars to 2.5 kpc
 - distances to 10% for ~100 million stars to 25 kpc
 - rare stellar types and rapid evolutionary phases in large numbers
 - parallax calibration of all distance indicators

e.g. Cepheids and RR Lyrae to LMC/SMC

- Physical properties, for example:
 - clean Hertzsprung-Russell diagrams throughout the Galaxy
 - solar neighbourhood mass function and luminosity function

e.g. white dwarfs (~200,000) and brown dwarfs (~50,000)

- initial mass and luminosity functions in star forming regions
- luminosity function for pre main-sequence stars
- detection and dating of all spectral types and Galactic populations
- detection and characterisation of variability for all spectral types

One Billion Stars in 3-d will Provide ...

- in our Galaxy ...
 - the distance and velocity distributions of all stellar populations
 - the spatial and dynamic structure of the disk and halo
 - its formation history
 - a rigorous framework for stellar structure and evolution theories
 - a large-scale survey of extra-solar planets (~10–20,000)
 - a large-scale survey of Solar System bodies (~100,000)
- ... and beyond
 - distance standards out to the LMC/SMC
 - rapid reaction alerts for supernovae and burst sources (~20,000)
 - QSO detection, redshifts, microlensing structure (~500,000)
 - fundamental quantities to unprecedented accuracy: γ to 10⁻⁷ (10⁻⁵ present)

Gaia: Studies of the Solar System

- Asteroids etc.:
 - deep and uniform (20 mag) detection of all moving objects
 - 10⁵-10⁶ new objects expected (340,000 presently)
 - taxonomy/mineralogical composition versus heliocentric distance
 - diameters for ~1000, masses for ~100
 - orbits: 30 times better than present, even after 100 years
 - Trojan companions of Mars, Earth and Venus
 - Kuiper Belt objects: ~300 to 20 mag (binarity, Plutinos)
- Near-Earth Objects:
 - Amors, Apollos and Atens (1775, 2020, 336 known today)
 - ~1600 Earth-crossers >1 km predicted (100 currently known)
 - detection limit: 260–590 m at 1 AU, depending on albedo

Satellite and System

- ESA-only mission
- Launch date: 2011
- Lifetime: 5 years
- Launcher: Soyuz–Fregat from CSG
- Orbit: L2
- Ground station: New Norcia and/or Cebreros
- Downlink rate: 4–8 Mbps

- Mass: 2030 kg (payload 690 kg)
- Power: 1720 W (payload 830 W)

Figures courtesy EADS-Astrium

- total detection noise: 6 e⁻

- red CCDs

= 59 mas x 177 mas

Sky Scanning Principle

Comments on Astrometric Accuracy

- Massive leap from Hipparcos to Gaia:
 - accuracy: 2 orders of magnitude (1 milliarcsec to 7 microarcsec)
 - limiting sensitivity: 4 orders of magnitude (~10 mag to 20 mag)
 - number of stars: 4 orders of magnitude (10^5 to 10^9)
- Measurement principles identical:
 - two viewing directions (absolute parallaxes)
 - sky scanning over 5 years \Rightarrow parallaxes and proper motions
- Instrument improvement:
 - larger primary mirror: $0.3 \times 0.3 \text{ m}^2 \rightarrow 1.45 \times 0.50 \text{ m}^2$, $\sigma \propto D^{-(3/2)}$
 - improved detector (IDT \rightarrow CCD): QE, bandpass, multiplexing
- Control of all associated error sources:
 - aberrations, chromaticity, solar system ephemerides, attitude control ...

Photometry Measurement Concept

Radial Velocity Measurement Concept (1/2)

Scientific Organisation

- Scientific community:
 - organised in Data Processing and Analysis Consortium (DPAC)
 - ~350 scientists active at some level
- Gaia Science Team (GST):
 - 7 members + DPAC Executive Chair + ESA Project Scientist
- Community is active and productive:
 - regular science team/DPAC meetings
 - growing archive of scientific reports
 - advance of simulations, algorithms, accuracy models, etc.
 - visibility in scientific meetings
- Data distribution policy:
 - final catalogue ~2019–20
 - intermediate catalogues as appropriate
 - science alerts data released immediately
 - no proprietary data rights

Status and Schedule

- Prime contractor: EADS-Astrium
 - implementation phase started early 2006
- Main activities and challenges:
 - CCDs and FPA (including PEM electronics)
 - SiC primary mirror
 - high-stability optical bench
 - payload data handling electronics
 - phased-array antenna
 - micro-propulsion
 - scientific calibration of CCD radiation-damage effects
- Schedule:
 - currently in Phase C/D
 - launch in 2011

The Radiation Effect on CCD

The Radiation Effect on CCD

□ CCD performance is progressively degraded due to the radiation accumulated in space, two effects are important:

Charge loss: total S/N is reduced due to electrons being trapped.

Star position bias: trapping and re-emission of electrons bias the star localization measurement.. Position bias is ~10 mas at EOL (0.16 pixel) for magnitude 15 and 410^9 p/cm² irradiation level.

Unraveling the chemical and dynamical history of our Galaxy

Gaia