GREAT - Kickoff meeting 26-27 March, 2009 IoA, Cambridge, UK

Open Clusters and Galactic Disk Observations with LAMOST

Li CHEN Shanghai Astronomical Observatory, CAS

chenli@shao.ac.cn

LAMOST Survey for the Milky Way Galaxy

Jinliang HOU Shanghai Astronomical Observatory, CAS

LAMOST dome at Xinlong Station, Northeast of Beijing, 110km

LAMOST Spectroscopic Surveys

- Key projects include
 - Extra-Galactic Survey
 - Milky Way Galaxy
 - Cross-identification
- 1. WG for the Milky Way study
- 2. WG for extragalactic survey
 - Survey plan shall be fixed in 2009

The Milky Way Survey plan:

• Consider a 5 year survey plan

- Spectra of 2.5m stars are expected
 - Using about 1/2 of the total dark observing time for halo (down to V=20m)
 - Using about 1/3 of the grey and all bright nights for bright stars (V=18m) in the 'green' fields

Scientific Objectives for the MWG

- 1. Halo -- almost well defined
- 2. Disk -- should be defined next month

(1) Dwarf galaxies and stellar moving groups

Licai DENG, Heidi Newberg et al.

(2) Constraining the gravitational potential

- The kinematical information carried by stars can be used to constrain the mass distribution in the Galaxy. Radial + tangential velocities + (α , δ ,d)
- Large area survey and homogeneous high precision data set is needed. Radial velocity measurement by LAMOST beyond GAIA limit (< 17m) will be important in this issue.

(3) Probing the Spheroid, is it triaxial?

• There is a apparent deviation from rotational symmetry as shown by star counts.

Stellar projected number density distribution in a ring at b=+60

Xu et al. (2007)

What are those substructures?

- Possibly
 - Dwarf galaxies
 - Globular clusters
 - Tidal debris of accreted dwarfs

- Tidal radius estimation: bound or unbound?
 - Need LAMOST survey data to confirm

(4) Searching for the metal poor stars

EMP and HMP stars expected to be found

Survey	Effective sky coverage	Effective mag limit	N<-3.0 (EMP)	N<-5.0 (HMP)
HES	6400 deg^2	<i>B</i> < 16.5	200	2
SEGUE	1000 deg^2	<i>B</i> < 19	1000	10
LAMOST	$12,200 \text{ deg}^2$	<i>B</i> < 18.5	6000	60
SSS	$20,000 \text{ deg}^2$	<i>B</i> < 18	5000	50

- These estimates are accurate only to within a factor of ~2!
- Number of stars to be found in SEGUE will mainly be limited by number of fibers allocated for follow-up. Only about 10% of all candidates down to B = 19 can be observed.

Making a survey for planed scientific goals

5 year plan's DARK and GREY (sky level legend on the right)

╢

16000d2, 2.5M spectra

(5) Scientific Objectives for the MW Disk

Disk, thin/thick

- 1. The structure of the thin/thick disks of the Galaxy, including the chemical abundance as a function of position within the disk and extinction in the disk;
- 2. Probing the center of the Milky Way with hypervelocity stars, including a survey for OB stars in the Galaxy;
- 3. A survey of the properties of Galactic open clusters, including the structure, dynamics and evolution of the disk as probed by open clusters;

Disk survey: several proposals

- Lamost Open Cluster dominated Survey (LOCS)
 - (CHEN LI et al.)
- Thin disk survey (with |b| < 5d)
 - (LI Jinzeng et al.)
- Galactic anticenter survey (with |b| < 30d)
 - (LIU Xiaowei et al.)
- Some specific programs:
 - Star forming regions (WANG Hongchi et al.)
 - Could Belt

- Observable nights (spectra) for LAMOST: ~200/yr
- If 1/3 assigned to Galactic survey ~ 65/yr → totally (750/65) > 12 yrs (assume: 1/3 of total are bright nights)

"OC dominated survey" - LOCS project

Aim: probe both OCS in Milky Way & statistical properties of the Disk

V_{lim}~16; 30 min. obs. R_V ~ 5 km/s [Fe/H] ~ 0.2 dex

OC dominated sky area $\Delta Gl \approx 230^{\circ} - 20^{\circ} = 210^{\circ}$ $\Delta Gb = 20^{\circ}$

OCs observable with LAMOST: total N ~ 720 With distance (> 200pc) information N ~ 400

A 1/4 subsample of LOCS:113OCs

$$\Delta Gl \approx 115^{\circ} - 65^{\circ} = 50^{\circ}, \Delta Gb = 20^{\circ}$$

LAMOST OC dominated Disk Survey:

400 OCs (spectroscopic database) to probe disk properties;
a representative sample of the disk stars:

 $\Delta Gl \approx 210^{\circ}, \Delta Gb = 20^{\circ}$

→spectra for 5×10⁶ stars distributed in this 2-D sky area (Rv & [Fe/H])

And, for ~ 150 first priority OC subsample (statistically significant) →LAMOST may output an important obs. dataset for disk study within 2 yrs

- Science for open cluster is significant, but OC is only about 1 square degree.
- How about the other fields in the plate? What kind of sciences could be done needs to be defined!

A sample of plate field one of the most crowded OCs field (9 Ocs)

Yellow circle: rad=2.5d, 9 OCs covered L=205d, B=-1.2d

Density~ $2600/d^2$

