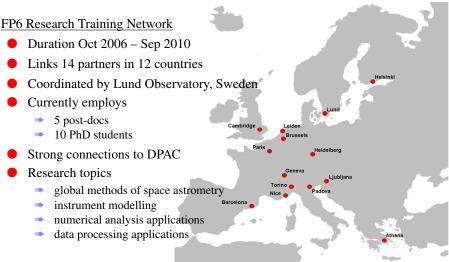


ELSA


European Leadership in Space Astrometry

Anthony Brown¹ & Lennart Lindegren²

¹Sterrewacht Leiden, ²Lund Observatory brown@strw.leidenuniv.nl

- What is ELSA and what are its aims?
- Networking
- Selected science results
- Benefits from ELSA

- 1. Study the **principles** of astrometric, photometric and spectroscopic measurements from a self-calibrating space platform like Gaia, and characterize errors and limitations
- 2. Model in detail the output signal from Gaia, including the effects of radiation damage of the CCD detectors
- 3. Study the **numerical behaviour** of the very large systems of equations that appear in the Gaia data analysis (stability, error propagation, convergence, efficient computation)
- 4. Apply advanced methods of **data processing** and management, numerical methods and statistics to these problems in a contribution to the Gaia data processing system
- 5. **Train the next generation** of researchers in space astrometry and transfer experience from the Hipparcos project and early Gaia studies

Post-docs				
Dr. Ummi Abbas	INAF/Torin	10		
Dr. Alex Bombrun	Heidelberg			
Dr. Paola Re Fiorentin	Ljubljana			
Dr. Daniel Risquez	Leiden			
Dr. Michael Weiler	Paris	DLT) students	
			s. Maya Belcheva	Athens
			s. Maria Czekaj	Barcelona
		M	r. Aidan Fries	Barcelona
		M	r. Berry Holl	Lund
		Μ	s. Dagmara Oszkiewicz	Helsinki
		Μ	s. Ester Pasquato	Brussels
		M	r. Thibaut Prod'homme	Leiden
		Μ	s. Tenay Saguner	INAF/Padov
		M	r. Luca Santoro	CNRS/Nice
		M	r. Mihály Váradi	Geneva

ELSA fellows

Astrophysical modelling

- Resolved stellar populations in other galaxies
- Refining the universe model in the Gaia simulator
- Stellar brightness asymmetries
- Synthetic and observed stellar spectra
- Tests of new input physics in stellar atmosphere models

Modelling the Gaia instrument

- Modelling radiation damage effects in Gaia CCDs
- Gaia Point-Spread Function modelling for simulations
- Improved attitude modelling for Gaia

Global astrometric solution

- · Characterization of astrometric errors
- Alternative astrometric solution methods for Gaia
- Gaia Sphere Reconstruction

Numerical, statistical and computational tools

- High-performance computing
- · Variability in large photometric surveys
- Statistical asteroid orbit computation
- Automatic classification and astrophysical parameter estimation

- Extended visits by fellows to other ELSA institutes to foster collaboration
 - in practice focused around specific topic, e.g., radiation damage to Gaia CCDs
- Close collaboration with DPAC
 - participation by fellows in DPAC meetings and workshops
- Contacts with industry
 - Dutch Space BV (ELSA partner): GRID computing and CCD modelling workshop
 - e2v on CCD modelling
 - EADS-Astrium on laboratory tests of Gaia CCDs
- Fellows attended various schools and scientific meetings
- Common tools, methodologies, and programming practices are used, making collaboration more efficient

ELSA School on the Science of Gaia

- Leiden Nov 2007
- focus on scientific motivation for Gaia
- 19 invited lectures, fellow posters presentations, afternoon exercises

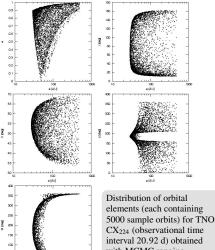
ELSA Workshop on Software Engineering and Numerics

- Barcelona Sep 2008
- included two days of fellow presentations with feedback on presenting skills by outside professional

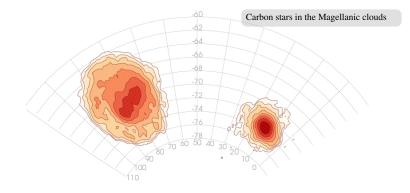
ELSA School on the Techniques of Gaia

- Heidelberg Sep 2009
- technical challenges of Gaia instruments, mission operations

• ELSA Conference: Gaia At the Frontiers of Astrometry

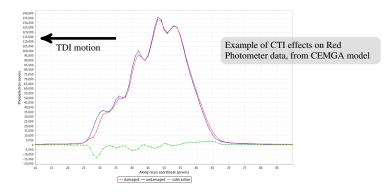

- Paris, 7–11 June 2010
- International conference presenting results obtained by ELSA, status of Gaia, complementary theoretical tools, ground-based work, and related missions

- Development of novel asteroid orbit computation method
 - Markov-Chain Monte Carlo ranging, capable of dealing with very few observations
- Method will be employed in CU4 processing
- Other applications include: computing collision probabilities, dynamical classification, performing the recovery of lost objects.


Credit: Dagmara Oszkiewicz

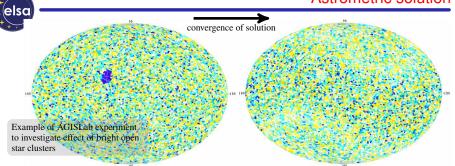
a (4) E

Stellar populations in nearby galaxies



- Obtain the spatial distribution of stellar components in nearby galaxies which are resolved in stars by Gaia
- Distribution for Magellanic Clouds obtained from current catalogues
- Results will adapted to Gaia resolution and introduced into universe model

Credit: Maya Belcheva


Theoretical and empirical modelling of CTI

- Realistic Monte Carlo simulations of radiation damaged CCDs
- MC model will include results from detailed CCD pixel modelling
- Macroscopic models tested as part of Gaia simulator
- Part of large collaboration on radiation damage mitigation
- Results essential to success of Gaia

Credit: Thibaut Prod'homme, Michael Weiler

Astrometric solution

- Scaled down version of AGIS developed; AGISLab
- Conjugate Gradients shown to drastically improve AGIS convergence
- Non-feasibility of a direct astrometric solution has been demonstrated
- AGISLab also used for: variability detection studies, stellar surface structure effects, error propagation and correlations
- Results already incorporated into real AGIS

Credit: Berry Holl, Alex Bombrun

- ◆ Important scientific research gets done for which DPAC has no time
 - several results already incorporated into DPAC developments
 - essential to success of mission
- Incorporation of non-astronomical expertise into Gaia project
- Interface between those preparing/running the mission and the 'scientists' improved
- Next generation space astrometry experts
- Example of how Gaia stimulates astronomical research now already

http://www.astro.lu.se/ELSA/